The Quality of Digital Radiography Images of The Sacrum Is Influenced by X-Ray Exposure Factors

Authors

  • Edwin Suharlim Universitas Yarsi Pratama, Indonesia
  • Evie Kusmiati Universitas Yarsi Pratama, Indonesia
  • Erwin Santoso Sugandi Universitas Yarsi Pratama, Indonesia
  • Adhitya Pratama Universitas Yarsi Pratama, Indonesia
  • Mila Aulia Hamidah Universitas Yarsi Pratama, Indonesia

DOI:

https://doi.org/10.62817/jkbl.v19i1.433

Keywords:

digital radiography (DR), sacrum, radiation dose, exposure index, personalised optimization

Abstract

Digital radiography of the sacrum requires precise adjustments of exposure parameters (kV, mA, time) to produce high-quality images while minimizing radiation exposure. This study aims to investigate how these exposure factors affect the quality of sacral images and to recommend optimal settings that align with radiation safety principles such as ALARA. By reviewing the existing literature, it was found that the modification of exposure parameters (kV, mA, time) in digital radiography is essential for achieving optimal image quality while minimizing radiation exposure. The exposure index (EI) serves as an indirect measure of the dose absorbed by the detector, thereby facilitating the implementation of the ALARA principles. Properly orienting the AEC chamber can reduce radiation dose by up to 44% without compromising image quality. Tube voltage and current adjustment enhances image contrast and sharpness. Nonetheless, inconsistent exposure methods and dependence on presets can still lead to dose creep. It is essential to train radiographers, adjust equipment settings, and set Diagnostic Reference Levels (DRLs) to enhance imaging quality and ensure patient safety. In digital radiography, factors such as tube voltage (kV), tube current (mA), and exposure time (s/mAs) significantly affect image quality and patient radiation dose. Adjusting exposure settings according to patient characteristics and exam objectives enhances image quality and reduces radiation exposure, particularly in sensitive areas like the sacrum. Technologies such as Exposure Index (EI), Automatic Exposure Control (AEC), and image analysis software facilitate an objective method that follows the ALARA principle, ensuring patient safety while optimizing diagnostic outcomes.

References

Dhahryan, D., & Azam, M. (2009). Pengaruh teknik tegangan tinggi Entrasce Skin Exposure (ESE) dan laju paparan radiasi hambur pada pemeriksaan abdomen. Jurnal Berkala Fisika, 12(1), 21–26. https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/2931

Lewis, S., Pieterse, T., & Lawrence, H. (2019). Retrospective evaluation of exposure indicators: A pilot study of exposure technique in digital radiography. Journal of Medical Radiation Sciences, 66(1), 38–43. https://doi.org/10.1002/jmrs.317

Manning-Stanley, A. S., Ward, J. A., & England, A. (2012). Options for radiation dose optimisation in pelvic digital radiography: A phantom study. Radiography, 18(4), 256–263. https://doi.org/10.1016/j.radi.2012.06.002

Marshall, N. W. (2001). Optimization of dose per image digital imaging. Radiation Protection Dosimetry, 94(1–2), 83–87. https://doi.org/10.1093/oxfordjournals.rpd.a006485

Mendonça, R. P., Estrela, C., Bueno, M. D., Carvalho, T. C., Estrela, L. R., & Chilvarquer, I. (2025). Principles of radiological protection and application of ALARA, ALADA, and ALADAIP: A critical review. Brazilian Oral Research, 39. https://doi.org/10.1590/1807-3107bor-2025.vol39.014

McFadden, S., Roding, T., de Vries, G., Benwell, M., Bijwaard, H., & Scheurleer, J. (2018). Digital imaging and radiographic practice in diagnostic radiography: An overview of current knowledge and practice in Europe. Radiography, 24(2), 137–141. https://doi.org/10.1016/j.radi.2017.11.004

Papp, J. (2011). Quality management in the imaging sciences. Mosby.

Rasad, S. (2005). Radiologi diagnostik (2nd ed.). Badan Penerbit FKUI.

Sartinah, Sumariyah, & Ayu, N. K. U. (2008). Variasi nilai eksposi aturan 15% pada radiografi menggunakan imaging plate untuk mendapatkan kontras tertinggi. Jurnal Berkala Fisika, 11(2), 45–52. https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/2980

Seibert, J. A., & Morin, L. R. (2011). The standardized exposure index for digital radiography: An opportunity for optimization of radiation dose to the pediatric population. Pediatric Radiology, 41, 573–581. https://doi.org/10.1007/s00247-010-1954-6

Sparzinanda, E., Nehru, N., & Nurhidayah, N. (2018). Pengaruh faktor eksposi terhadap kualitas citra radiografi. Journal Online of Physics, 3(1), 14–22. https://doi.org/10.22437/jop.v3i1.4428

Welarathna, S., Velautham, S., Wanninayake, M., & Sarasanandarajah, S. (2022). Evaluation of patient doses for routine digital radiography procedures toward establishing an institutional diagnostic reference levels: A case study in Sri Lanka. Journal of Applied Clinical Medical Physics, 23. https://doi.org/10.1002/acm2.13852

Yufita, E., Bancin, S. I., Zulfalina, Irhamni, Malahayati, M., Mursal, & Safitri, F. (2023). Analisa pengaruh faktor eksposi pesawat sinar-X terhadap densitas optik film radiografi. Hadron: Jurnal Fisika dan Terapan, 5(1), 9–14. https://ejurnalunsam.id/index.php/jh/article/view/7315/3942

Downloads

Published

2026-01-30

How to Cite

Suharlim, E., Kusmiati, E., Sugandi, E. S., Pratama, A., & Hamidah, M. A. (2026). The Quality of Digital Radiography Images of The Sacrum Is Influenced by X-Ray Exposure Factors. Jurnal Kesehatan Budi Luhur: Jurnal Ilmu-Ilmu Kesehatan Masyarakat, Keperawatan, Dan Kebidanan, 19(1), 210–218. https://doi.org/10.62817/jkbl.v19i1.433

Citation Check